Rock Mechanics Seminar Series 2010

Bonus 1: Principles of Numerical Solution

FEM mesh (2D for simplicity)

Figure shows part of our mesh, with some elements surrounding node i. (On figure elements A, B, C, D, E.)
Think triangles, but "any" shapes allowed. General element is called e, with nodes i, j, and m.

Displacement in node $i: \mathbf{u}_{i}=\left(u_{i}, v_{i}\right)^{\mathrm{T}}$

When some force is applied to e, a point x in e will have a displacement

$$
\mathbf{u}(\boldsymbol{x})=\{u(\boldsymbol{x}), v(\boldsymbol{x})\}^{\mathrm{T}} .
$$

In our scheme we approximate \mathbf{u} with: $\quad \mathbf{u} \approx \hat{\mathbf{u}}=\sum_{k \in e} \psi_{k} \mathbf{u}_{k}^{e}=\Psi \mathbf{u}^{e}$

Shape function

ψ is called the shape function.
Elements with a linear shape function are called linear elements, and ψ_{i} is typically as on the figure, i.e. ψ_{i} is 1 in node i, and 0 in the other nodes.

$$
\mathbf{u} \approx \hat{\mathbf{u}}=\sum_{k \in e} \psi_{k} \mathbf{u}_{k}^{e}=\mathbf{\Psi} \mathbf{u}^{e}
$$

then means that $\hat{\mathbf{u}}$ is equal to \mathbf{u}_{k} in node $k(k=i, j, m)$, and some interpolated value in the interior of the element.
$\hat{\mathbf{u}}$ is hence a linear approximation to \mathbf{u} within the element.

Computing strains

We use the expression we derived earlier:

$$
\boldsymbol{\varepsilon}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\Gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}=\underbrace{\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]}_{\mathbf{S}}\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$\Rightarrow \boldsymbol{\varepsilon}=\mathbf{S u}$
With $\mathbf{B}=\mathbf{S \Psi} \quad \boldsymbol{\varepsilon} \approx \hat{\boldsymbol{\varepsilon}}=\mathbf{B u}$
is an expression for the nodal strains.
Note: I'm partially using the notation of Zienkiewicz, which may sometimes be conflicting with notation from prev. seminars. Sorry, but it wasn't easy to be consistent.

Stresses and nodal forces

For simplicity I omit initial / static stresses and assume isotropic material.
Then we expressed stress by strain as:

$$
\begin{aligned}
& \boldsymbol{\sigma}=\mathbf{C} \boldsymbol{\varepsilon} \\
& \text { where } \\
& \mathbf{C}=\frac{E}{1-v^{2}}\left\{\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right\}
\end{aligned}
$$

A force \mathbf{q}^{e} acts on e, nodal forces $\quad \mathbf{q}^{e}=\left\{\begin{array}{l}\mathbf{q}_{i}^{e} \\ \mathbf{q}_{j}^{e} \\ \mathbf{q}_{m}^{e}\end{array}\right\} \quad \begin{aligned} & \text { In addition body } \\ & \text { forces } \mathbf{b} \text { act on } \\ & \text { the material } \\ & \text { (constant) }\end{aligned}$

Virtual work

Impose virtual (infinitesimal) nodal displacements on element.
Equate external \& internal work done by the applied forces \& stresses during that displacement (std. FEM approach).

The nodal virtual displacement is $\delta \mathbf{u}^{e}$.
Within the element, $\delta \mathbf{u}=\boldsymbol{\Psi} \delta \mathbf{u}^{e}$, and $\delta \boldsymbol{\varepsilon}=\mathbf{B} \delta \mathbf{u}^{e}$.
The work done by the nodal forces: $\left(\delta \mathbf{u}^{e}\right)^{\mathrm{T}} \mathbf{q}^{e} \quad$ (distance x force)
Internal work per unit volume by stresses \& body force:

$$
\begin{aligned}
& \delta \boldsymbol{\varepsilon}^{\mathrm{T}} \boldsymbol{\sigma}-\delta \mathbf{u}^{\mathrm{T}} \mathbf{b} \\
& \Leftrightarrow \delta \mathbf{u}^{\mathrm{T}}\left(\mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma}-\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{b}\right)
\end{aligned}
$$

Virtual work

$\delta \boldsymbol{\varepsilon}^{\mathrm{T}} \boldsymbol{\sigma}-\delta \mathbf{u}^{\mathrm{T}} \mathbf{b}$
$\Leftrightarrow \delta \mathbf{u}^{\mathrm{T}}\left(\mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma}-\boldsymbol{\Psi}^{\mathrm{T}} \mathbf{b}\right)$

Let ext. forces $=$ int. forces over the elem. volume:

$$
\delta\left(\mathbf{u}^{e}\right)^{\mathrm{T}} \mathbf{q}^{e}=\delta\left(\mathbf{u}^{e}\right)^{\mathrm{T}}\left[\int_{V^{e}} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} d V-\int_{V^{e}} \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{b} d V\right]
$$

As this is valid for all virtual displacements $\delta \mathbf{u}^{e}$:

$$
\mathbf{q}^{e}=\int_{V^{e}} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} d V-\int_{V^{e}} \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{b} d V
$$

Recall $\boldsymbol{\sigma}=\mathbf{C} \boldsymbol{\varepsilon}$ and $\hat{\boldsymbol{\varepsilon}}=\mathbf{B u}$ Hence $\mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma}=\mathbf{B}^{\mathrm{T}} \mathbf{C} \boldsymbol{\varepsilon}=\mathbf{B}^{\mathrm{T}} \mathbf{C B} \mathbf{u}$

$$
\begin{aligned}
& \int_{V^{e}} \mathbf{B}^{\mathrm{T}} \boldsymbol{\sigma} d V=\int_{V^{e}} \mathbf{B}^{\mathrm{T}} \mathbf{C} \mathbf{B} \mathbf{u}^{e} d V \stackrel{\operatorname{def}}{=} \mathbf{K}^{e} \mathbf{u}^{e} \\
& -\int_{V^{e}} \boldsymbol{\Psi}^{\mathrm{T}} \mathbf{b} d V \stackrel{\operatorname{def}}{=} \mathbf{f}^{e}
\end{aligned}
$$

Virtual work

Summing up:

$$
\mathbf{q}^{e}=\mathbf{K}^{e} \mathbf{u}^{e}+\mathbf{f}^{e}
$$

\mathbf{K}^{e} is the element stiffness matrix:
$\mathbf{K}^{e} \mathbf{u}^{e}=\left\{\begin{array}{cccc}\mathbf{K}_{11} & \mathbf{K}_{12} & \cdots & \mathbf{K}_{1 m} \\ \mathbf{K}_{21} & \mathbf{K}_{22} & \cdots & \mathbf{K}_{2 m} \\ \vdots & & & \vdots \\ \mathbf{K}_{m 1} & \mathbf{K}_{m 2} & \cdots & \mathbf{K}_{m m}\end{array}\right\}\left\{\begin{array}{c}\mathbf{u}_{1} \\ \mathbf{u}_{2} \\ \vdots \\ \mathbf{u}_{m}\end{array}\right\}$

Assembly

The structure we're studying (e.g. our reservoir) is generally also loaded by external forces \mathbf{r}, $\mathbf{r}=\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathrm{n}}\right\}^{\mathrm{T}}$, applied at the nodes in addition to the distributed loads applied to individual elements.

Equilibrium of node i requires that \mathbf{r}_{i} is equal to the sum of forces contributed by the elements with node i as common point.

$$
\mathbf{r}_{i}=\sum_{e=1}^{n_{e}} \mathbf{q}_{i}^{e}
$$

(Obviously most of the terms vanish)
Example in figure: $\mathbf{r}_{i}=\mathbf{q}_{i}^{A}+\mathbf{q}_{i}^{B}+\mathbf{q}_{i}^{C}+\mathbf{q}_{i}^{D}+\mathbf{q}_{i}^{E}$
($\mathbf{q}_{i}{ }^{e}$ is the force contributed to node i by element e)
Then:

$$
\mathbf{r}_{i}=\left(\sum_{e=1}^{n_{e}} \mathbf{K}_{i 1}^{e}\right) \mathbf{u}_{1}+\left(\sum_{e=1}^{n_{e}} \mathbf{K}_{i 2}^{e}\right) \mathbf{u}_{2}+\ldots+\left(\sum_{e=1}^{n_{e}} \mathbf{K}_{i m}^{e}\right) \mathbf{u}_{n_{i}}+\sum_{e=1}^{n_{e}} \mathbf{f}_{i}^{e}
$$

Assembly

To get a global system to solve, we now assemble all the contributions from all the elements:

$$
\mathbf{K u}=\mathbf{r}-\mathbf{f}
$$

$$
\begin{array}{lll}
\text { where: } & \mathbf{K}_{i j}=\sum_{e=1}^{n_{e}} \mathbf{K}_{i j}^{e} & \begin{array}{l}
\text { Tip: } \\
\text { To really understand the }
\end{array}
\end{array}
$$

$$
\mathbf{f}_{i}=\sum_{e=1}^{n_{e}} \mathbf{f}_{i}^{e} \quad \begin{aligned}
& \text { assembly procedur } \\
& \text { try to program it! }
\end{aligned}
$$

This is called the stiffness formulation. The alternative, compliance formulation is also much used.
(System can be solved with error tolerance on stress, strain, or displacements.)

Short cuts

We have omitted (essential) parts of procedure

- Boundary conditions
- Displacement BCs easily handled, other BCs require some computations
- Prior to element computations, every element is transformed to "standard elements"
- We only considered linear elements with nodes on corners. In practice higher order elements with additional nodes ('integration points") are often used.
- Triangular (or pyramids in 3D) are the simplest elements. "Any" number of faces are permitted, typically chosen tailored to the problem.

Elasto-plastic solution proc. in Visage

After assembly of \mathbf{K}, solve for displacements \mathbf{u} and $\Delta \mathbf{u}$.
i. Calculate strains: $\Delta \boldsymbol{\varepsilon}=\mathbf{B} \Delta \mathbf{u}$.
ii. Assume elasticity, calculate stress: $\Delta \boldsymbol{\sigma}=\mathbf{C} \Delta \boldsymbol{\varepsilon}$ Update $\sigma=\sigma+\Delta \sigma$
iii. Compute stress invariants J_{1}, J_{2}, J_{3}.
(Typically p, q, and Lode angle (defined in a while))
iv. Use pre-selected failure criterion $F\left(J_{1}, J_{2}, J_{3}\right)$.
a. If $F<0$ at all integration points (FEM-nodes) the material behaves elastically.
b. If $F \geq 0$ at any FEM-node, the yield criterion has been violated. Excess stresses exist, which must be redistributed into neighbouring FEM-nodes.
(Expansion of yield surface?)

Elasto-plastic solution proc. in Visage

To reach a stationary equilibrium state, we solve for a time-dependent strain development when forces / stresses are applied in small increments with time increments Δt.
(Reminder: plastic strain may change with time even though the applied stress doesn't change.)

Total strain is divided into elastic and plastic: $\Delta \boldsymbol{\varepsilon}=\Delta \boldsymbol{\varepsilon}^{e}+\Delta \boldsymbol{\varepsilon}^{p}$ The plastic strain rate is:

$$
\dot{\varepsilon}^{p}=f(F) \frac{\partial g}{\partial \sigma} \quad \text { (a little simplified compared to actual expr.) }
$$

g is the visco-plastic potential

The complete flow chart is then (next slide):

Visco-plasticity flow chart

