
Rock Mechanics Seminar Series 2010

4. Yielding and plasticity in soils



Concepts – notation

We’re used to porosity – In soil mechanics
specific volume & void volume is more common.

With bulk volume VB, solids (grain) volume VS, and pore volume VP:
Specific volume v = VB/VS
Void volume e = VP/VS
As VB = VS + VP,
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Concepts – notation

σr

Triaxial test

σrσr

σr

σr

Sample (core) initially surrounded by fluid
with pressure r, uniformly acting on all sides
(on nonpermeable membran)

Sample is then subjected to an axial force F
acting on area A.

We measure F, the elongation δℓ, and the
volume change δV.

The axial stress is
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(Small correction term due to experimental
setup neglected.)



Concepts – notation

σr

Triaxial test

σrσr

σr

σr

F

Area A

Deviator stress q:

A
Fq ra  

The sample may be saturated w. a fluid with
pressure pf . The relevant stress will henceforth
be the effective stress ’, and I’ll drop the ” ’ ”.
Hence unless explicitly stated  will denote
effective stress from now on.

The mean effective stress in this setup is:
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Concepts – notation

σr

Triaxial test

σrσr

σr

σr

F

Area A
p and q will be our primary variables.
(Partly / mainly because they are
readily measureable in a triaxial test.)

Recall from seminar 1 that p and q in a
non-axial-symmetry (general) setting were:
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Easier to view these as mean and deviator
stress…



Yielding of clay

Recall our theoretical ”experiment” to determine a failure surface,
and our inability to perform repeated experiments on a sample
carried through to failure.

We can get pretty close by using clay samples, where ”identical
samples” with ”identical” preloading history and ”identical” content
& composition are (beleived to be) available.

Many such experiments have been reported, and the following theory
is based on results from such studies.



Yielding of clay

Triaxial clay test on three identical samples,
initial (p, q, v) are identical.
Experiment procedure (e.g.)

1. Isotropic compression (increasing cell pressure)
2. 1D compression – axial stress increased such that lateral strain

does not occur
3. Conventional undrained compression test with pore pressure

measurement.

The main idea is to perform loading tests with different stress paths.
In all experiments (p, q, v) are measured regularly.



Yielding of clay
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Results from the three
different tests in (p:q)-space

All tests start in point A, but
follow different stress paths
(curves in (p:q)-space)



Yielding of clay
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Experiment 1:
We observe the yield point Y1
at a p-value of p1.

Can be marked on (p:q)-plot



Yielding of clay
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Experiment 2:
We observe the yield point Y2
at a vertical stress value of v2.

Can be marked on (p:q)-plot
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Yielding of clay
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Experiment 3:
We observe the yield point Y3
at a shear strain value of q3.

Can be marked on (p:q)-plot
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Yielding of clay
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We already have a good idea
of how to sketch the yield curve
in (p:q)-space.

The main idea is to perform tests
with different stress paths (curves
in (p:q)-space), where also the p,q-
values are readily measurable.

Additional tests could obviously
have been done, increasing detail
in the curve.
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More advanced experiments
could give yield surfaces in 
3-D stress space, of which
the (p:q)-plane is one
particular section.



Yield surface

The yield surface (or yield locus)
is a bound for all elastically
attainable states for soil with one
particular history.
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Yield surface

”Axiom”: A stress state can lie on or inside a current yield surface,
but never outside the surface.

”Passing” of a yield point requires the current yield surface to
change size, and possibly shape.

Any subsequent probing investigates the
shape of the new current yield surface,
not the original yield surface.

(& it was difficult to get one surface…)

Compare to ”intuitive” understanding of compaction
in the grain pack model.
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Elastic – plastic model for soil

For this description we will assume that
the changes in size of the current yield
locus is related to volume changes.
(”Volumetric hardening models”.)

In the elastic region changes are independent
of the path (A to B and back along any path
is indifferent). This is a characteristic of
elasticity.
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Simplistic ”broad-brush” approach
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Establishing the current yield locus e.g. by OC is a result of the past
loading history.
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Elastic – plastic model for soil
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The previous figure in (p:v)-space

The expansion (”shape-shifting”) of the
current yield locus is along the
normal compression line (ncl).

Changes within the elastic region are
along unloading – reloading lines (url).

ncl

url

Experimentally it has been found that the ncl often has a logarithmic form:
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Elastic – plastic model for soil

ln p
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ncl

url
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We also assume a similar form for the url:

(more questionable?)

p = 1

vλ

vκ

(slope λ)
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ncl:



Plastic volumetric strains & plastic hardening
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We are on a stress state K on the current
yield locus yl1. 
Moving to stress state L in (p:q)-space
can only be achieved by the soil yielding
(failing).
L must lie on a new yield locus yl2.

What is the shape of yl2?

Results from (the comparatively very few) experiments performed
to determine the shapes of different yield loci on the ”same” sample
indicate that the shape does not change noticeably when the locus expands.
Based on scarce info & a desire to keep it simple, we state the axiom:
Irrespective of the stress path by which a new yield surface is created
its shape remains the same.



Plastic volumetric strains & plastic hardening

p

q

K

O

L

yl1

yl2 Irrespective of the stress path by which a 
new yield surface is created its shape
remains the same.

 Convenient, but not necessary assumption

(but I don’t think I’ve seen anyone not using it…)

The soil for which the yield locus is now yl2 is opaque to attempts to
elucidate details of its history.

(Note again how nicely this fits the intuitive understanding based on grain packing) 



Plastic volumetric strains & plastic hardening
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When reducing the volume from A to B
and expanding the yield surface,
the volume change is Δv,

Δv = Δve + Δvp.

(elastic vol. chg + irrecoverable plastic vol. chg)

To get Δve we increase p from p01 to p02, and then
reduce it back to p01. Using idealized ncl and url:
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Plastic volumetric strains & plastic hardening

url2 ΔvΔvp
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For plastic strains:

0

0

01

02

01

02

01

02

022011

0102

12

2

1

)(  changes, smallFor 

.ln)(

lnln

)ln(ln
)ln(ln

or
.

ln :url2
ln :url1

p
pv

p
p

p
p

p
p

pvpv
pvpvv

vvvv

pvv
pvv

p

p

p































































Plastic volumetric strains & plastic hardening
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Expansion of yield locus from yl1 to
yl2 could have been achieved by an
infinitude of stress paths, e.g. as in
figure: A1 – A2, B1 – B2, C1 – C2,
D1 – D2.

Δp is different for these, hence also
δve is different.

But as all stress paths link the same
two yield loci, δp0 and irrecoverable
volume change is the same.

 There is a basic difference in the way elastic and plastic volume
changes are generated.

Plastic strain
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 Plastic volumetric strains provide
only a partial description of the plastic
deformation – the magnitudes of the
plastic shear strains also play a role.

The directions of the plastic strain
increment vectors are governed by the
particular combination of stresses at
the particular point at which the yield
surface was reached, not by the route
through stress space that was followed
to reach the yield surface.

Plastic strain



Plastic strain
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The relative magnitudes of strain increments
are linked to:
Stresses – for plastic strain increments
Stress increments – for elastic strain increments

This is a distinguishing feature
of plastic vs. elastic response.



Plastic potentials
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Plastic deformations depend on the
stress state at which yielding occurs,
rather than on
the route by which that stress state is reached.
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Yielding occurs at Y (in p:q-plane),
associated with some irrecoverable
volumetric plastic strain
and some plastic shear strain
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Plot these components at Y to form
a plastic strain increment vector YS.

Draw line AYB orthogonal to YS. 



Plastic potentials
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Yielding can occur under many combinations 
of stresses in the history of a soil.
For each combination, such a vector of plastic
strain can be drawn through each yield point,
as well as the normal (AB).

The set of such normals generate a family of
curves which have the normals as tangents.

These curves are called plastic potentials

Given a plastic potential, it’s normal
at a point Y defines the direction of
the plastic strain increment.
(Magnitude discussed earlier.)
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Yield loci and plastic potentials

Yield loci (solid) &
plastic potentials (dashed)

Complete specification of the soil
model requires information about
both these sets of curves.

(Define magnitudes & directions)

Y



Yield loci and plastic potentials
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Obviously an advantage if yield loci and
plastic potentials coincide.

If so, then the plastic strain increment vector
is the outward normal to the yield surface.

Materials with such behaviour are said to
obey the postulate of normality.

Another much used term for the same:
The material follows the law of
associated flow

(nature of plastic deformations is associated
with the material’s yield surface).

In general materials are
described by
non-associated flow.



Validity considerations

We’ve made quite a few assumptions.
These are convenient, but not necessary.

Pure theoretical considerations are more or less absent
– our models are, and must be based on experiments / observations.

Complex models with no / few assumption constraints do exist
(and are in use), but:
simplifying assumptions are most typically used due to
lack of empirical data.



General plastic stress – strain relationship

Having established an understanding of plasticity through a
simplified material model, we are now in a good position to
attack the general description:

Suppose the soil’s yield loci are described by:
f (p, q, p0) = 0         (p0 indicates size of ”current” locus)

and the plastic potentials:
g (p, q, ζ) = 0 (ζ: parameter controlling size of

potential passing through (p, q). )



General plastic stress – strain relationship

The plastic strain increments are related to the normal to the
plastic potentials at current stress state:
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χ is a scalar tied to the hardening characteristics (how far does
the yield surface move in response to a stress change?)

Suppose change in yield locus size (Δp0) is linked to increments
in both plastic volumetric strain and plastic shear strain, i.e. a
hardening rule:
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General plastic stress – strain relationship
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Differentiating yield loci expression:

Expressions on the last two slides can be combined and solved for χ:
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which can be substituted back to obtained closed expressions
for volumetric and shear plastic strain increments.


