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3. Failure 



Load curve from prev. seminar

From Zoback
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Ideal (theoretical) load curve
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Elastic Ductile Brittle

Crack closing

Yield stress

Uniaxial
compressive strength

Ductile:
Permanent deformation without
losing ability to support load.
Brittle:
Ability to withstand stress
decreases (rapidly) with
increasing deformation.
Yield point:
Beyond here permanent
changes occur.
UCS:
The peak stress

Rightmost part of curve mostly purely
theoretical, as material will fail (break)
before it can be measured.
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Hardening / Softening; 
Material’s ability to support loading
increases / decreases w. load.



Failure of rock in compression
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1. Microscopic failures

• Creation of small tensile cracks

• Frictional sliding

2. Coalescence of micro-failures into
a through-going shear plane

Brittle: Loss occurs ”catastrophically”
(Matr. loses all strength immediately.)

Ductile: More gradual failure.



Failure process

1. Evidently, combinations of σ1, σ2, σ3 exist such that the material
does not fail for these values. (”Safe values”)

2. From experiments and experience we also know that combinations
of (σ1, σ2, σ3) exist such that the material fails (breaks) at these values.

Theoretical experiment:
From a safe state, change stress values until material fails. Notice relevant
(σ1, σ2, σ3).
Repeat experiment infinitely many times, each time arriving at a new
triplet (σ1, σ2, σ3).

It is reasonable to assume that this collection of points will span a surface
in σ – space: The failure surface.
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Failure surface

f(σ1, σ2, σ3) = 0

All points interior to the surface
are ”safe”.

Existence of failure surface
implies that failure is
independent of stress gradients
and stress history, which may
not be true.
But still good as a concept.

Note that our ”experiment”
revealed one of the ”problems” of
rock mech testing: It is impossible
to repeat a failure experiment.



Mohr hypothesis
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Shear failure occurs when shear stress τ
along plane is too large. (σ is plane-normal
stress.)

Mohr hypothesis: Failure can be described
by

|τ| = f(σ).

In the (τ – σ) - plane the equation describes
some curve which separates a safe region
from a failure region.

Note: Mohr hypothesis only applies to
shear failure.

β



Shear failure
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Recall the (closed) blue area contains all permitted
combinations of σ, τ..
As drawn, the material cannot fail.



σ1 is increased: Approaching failure
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σ1 is increased more: At failure

σ

τ

σ1σ2σ3

f(σ)

Failure occurs at this
combination of σ, τ.

Note: At this stage we can’t increase σ1
further, because the failure encelope is the
validity boundary for elastic behaviour.

Note2: Pure shear failure by Mohr hypothesis
does not depend on intermediate stress.



The Mohr-Coulomb criterion
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Specific choices of f(σ) give different failure criteria.
Simplest: A straight line (MC)

|τ| = S0 + μσ
S0: Inherent shear strength

(Cohesion)

μ: Coeff. of internal friction

φ: Friction angle,  tan φ = μ

Simple but very popular, and also successful, e.g. to
describe fault failure



The Mohr-Coulomb criterion
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Recall that β was the angle between
the vertical and the failure plane normal

From the figure we see that
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As 0 < φ < 90º, β must be in the range  45º < β < 90º
(In practice φ is often not far from 30º, hence typically β ≈ 60º)



MC: Permitted failure planes

45º < β < 90º
often β ≈ 60º





σ1

Not too uncommon fault plane slope direction

Note that by MC, 
the failure angle is 
determined solely by 
the friction angle, 
independent of the 
confining stress.



MC in 3-D stress space
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The Mohr-Coulomb criterion
is analyzed in the (,)-plane
(Normal to failure plane).

OK for a single failure plane,
but we often want to operate in
(fixed) -space.

The MC failure line will be a
straight line for projections on
all kinds of planes, but the
slope angle will obviously vary.



MC in 3-D: Projection on (1 - 3) - plane
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From figure (and seminar 1), the tangent
point is:
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Using these values of (, ) in the MC-equation:
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Replacing  and μ by φ (using prev. expressions) and manipulating:
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MC in 3-D: Projection on (1 - 3) - plane
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Hence the projection of the MC-line
on the (1 - 3) – plane has a slope α:
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MC in 3-D: Projection on (1 - 3) - plane

α
σ3

σ1 This line was from the assumption
1 > 2 > 3.
The case  3 > 2 > 1 is symmetric about the
line 1 = 3.

Both lines included in lower figure.

Projection (on (1 - 3) – plane) of 
the part of the failure surface
for which 2 is between 1 and 3.

Similar constructions can be done for the cases
1 intermidiate (on (2 - 3) – plane) and
3 intermidiate.σ3

σ1



MC failure surface in principal stress space
σ3

σ1

σ2

σ1 = σ2 = σ3
(hydrostatic axis)

Tresca-criterion:
Yield occurs when max.
shear stress reaches a crit.
value:

max(σi – σj) = 2c, i,j = 1,2,3
(c = uniaxial yield stress)

→ hexagonal prism



MC failure surface in π-plane
3-D drawings can be difficult to make and analyze.
Failure surfaces are often studied in a plane, of which
a much used is the π-plane, which is normal to the
hydrostatic axis.



Mohr Coulomb summary

▲ Simple – easy to analyze

▲ Reasonably good predictive ability (e.g. fault slopes)

▼ Independent of intermediate stress (not always true)

▼ Non-smooth failure surface (physics? Numerics?) 



Other similar criteria

A number of failure criteria has been constructed by
either assuming another form of f(), or by direct
assumptions on the shape of the failure surface.
All of these attempt to improve match to experiments.

Some mentioned:
• Tresca (prism in lieu of pyramid)
• von Mises (smooth version of Tresca (elliptic prism))
• Griffith
• Drucker-Prager
• +++

If interested consult relevant litterature.



Failure under tension

Tension is expansion, i.e. in a porous rock, the
pore pressure will be increased to a level such that
the effective stress becomes negative, and lower than
the material’s tensile strength.

Typical examples are fracturing near an injection well,
and (pehaps) overburden fracturing if reservoir pressure
is sufficiently increased (”balloon effect”).

The theory is complex – too complex for this seminar.
So let’s leave it with that…



Grain packing and failure

σ Consider a granular sample
under compression.

Typical compression coeff’s:
Bulk:      (0.1 – 1 GPa)-1 (sand)

(5 – 15 GPa)-1 (sandstone)
Grains: ≈(38 GPa)-1 (quartz)

I.e. Bulk compressibility is much
larger than grain compressibility;
for sands 2-3 orders of magnitude
larger.

Grain compression is insignificant
compared to pore volume reduction



Grain packing and failure
(As good as) The entire compaction must
be attributed to pore volume reduction.

Key observation:
If grains are (almost) incompressible,
it is impossible to compress the sample
without reorganizing the grains. (Try it!)

Hence,
Each level of compaction corresponds to
some grain packing configuration.

During compaction, the pore walls are
continuously failing. (As far from elasticity
as we can get (?))



Principle of stable settlement

When grains reorganize they will always tend to seek
the most stable packing pattern available.

 Grains will never reconfigure from the current
pattern to a less stable one.



Consequences of stable settlement

In a loading process, each (eff.) stress state corresponds to a stable packing
 the tightest possible packing at that stress level.

 The soil has no memory of its previous states (solids do!)
 Each packing level can be regarded as a ”new” material with its own

poro-elasto-plastic parameters
 Packing will be increasingly harder to achieve as it becomes tighter.
 Each ”packing level” is more stable than previous levels
 Bulk modulus increases with effective stress

 Relieving stress will not return the soil to a previous (less stable) level
 Permanent deformation
 Present packing is a result of the historical maximal effective stress



Intuitive qualitative soil response 

p’

”Pore volume”

Primary loading
(cont. pore wall failure)

Primary reduction of pore volume
requires increasingly larger (eff.) 
stress increase
 Material hardens
Blue arrows: 
Unloading – reloading:
No or small volume change.
≈ linear elastic behaviour

p’

q In stress-space (now using p’ and q),
by analogy with MC, we have a ”safe”
region, where material behaves elastic
(grey). Unloading – reloading
is within this region.
To move down the primary load line,
we must increase the size of the
”current region”. How do we do that?



Open questions

What does the elastic region boundary look like?

How does it change when the material changes
from elastic to plastic?

How does the material harden / soften?

What are the consequences of hardening / softening
(for instance w.r.t. failure) ?

Tune in on the following seminar(s)!


