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2. Strain, Elasticity 



Definition: Strain  – Elongation 
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Line segment OP has been deformed to OP’.
The elongation  is defined as;
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Elongation is an example of strain:
Particles in a volume move in a manner which
cannot be described by rigid motion or rotation
of the volume as such.

Convention:  > 0 for a contraction.



Definition: Strain  – Shear 
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An initial orthogonal angle is deformed by
an angle . Then
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is called shear strain
corresponding to point O and direction OQ

In general, assume a particle (x,y,z) in a body
is shifted to position (x’, y’, z’) when the body
is deformed. Set

x’ = x – u
y’ = y – v
z’ = z – w



2D Infinitisemal strains
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Elongation at (x,y), in x-direction:
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Shear strain corr. to x-direction:
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All components of strain
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Strain Tensor:
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Volumetric Strain: (invariant)
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Alternative notation

Strain Tensor:

x = (x, y, z)
u = (u, v, w)
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Obviously ij = ji

Symmetric, but no point in
diagonalising if principal axes of
strain ≠ principal axes of stress



Simulated bending of Sand Box (low tension strength)
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Simulated bending of Sand Box (low tension strength)
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Linear Elasticity

Hooke’s law:
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Memory from Oxford, ECMOR XII

Lateral elongation (width increase):
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E (Young’s modulus) and
ν (Poisson’s ratio)
are examples of Elastic Moduli



Elastic Modili (in idealized experiments)

Young’s modulus:
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Poisson’s ratio:
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An isotropic (and homogeneous) material will respond to 
applied stress independent of the orientation (of the stress).
For isotropic materials principal axes of stress and strain coincide.

(for unidirectional stress, i.e. 11 ≠ 0, and 22 = 33 = 0)



Basic Constitutive Laws

Assuming infinitesimal displacement δu the response is linear.
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Total strain in x-direction =
= elongation strain caused by x
+ width increase strain by y:
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Basic Constitutive Laws

Including z-direction:
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Basic Constitutive Laws

Solving these equations for stress:
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where G and λ are other elastic modili.



Elastic Modili

Young’s modulus:
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(Compressibility = 1/K)

Lamé’s constant λ: No direct physical meaning, but convenient. E.g.
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1)Distortion w. no volume change.  2)Volume change, no distortion



Elastic Modili – typical magnitudes

4137.5Quartz

27.574Calcite

-0.3 – 0.45 – 85Granite

0.05 – 0.35 – 30Chalk, loporo

0.05 – 0.350.5 – 5Chalk, hiporo

0 – 0.30.4 – 70Shale

~0.40.06 – 0.15Clay

0 – 0.450.1 – 30Sandstone

~0.450.01 – 0.1Uncons. sand

G (GPa)K (GPa)νE (GPa)Material



Elastic modili (cont’d) 

In an isotropic (and homogeneous) material only two elastic modili are
needed to fully describe the material.

A number of relationships between the five standard modili exist,
and in practice the two modili that are most suited for the given
experiment / situation will be used.

But unfortunately, isotropic materials are pretty rare in nature…



Anisotropic materials 

In an anisotropic material nothing can be assumed.
E.g., Young’s modulus will be direction dependent,
and the material’s response to load (stress) will depend on
the stress orientation.

Still assuming linear behaviour, the most general stress–strain
relationship will be:
Every component of stress depends on all components of strain:
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Cijkl elastic constants.  (i, j, k, l = 1, 2, 3  81 constants)



Anisotropic materials (2) 


lk

klijklij C
,



Symmetry considerations & no-rotation/translation at rest imply:

Cijkl = Cjikl = Cijlk = Cjilk

Strain energy symmetry (not derived here):

Cijkl = Cklij

 Number of independent constants reduced to 21 



Anisotropic materials (3) 
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Rocks normally possess orthorombic symmetry 
(material has three perpendicular planes of symmetry)
Then the stress response will be identical if we e.g. let
x  x, y  y, z  -z 
which implies

C1113 = C1123 = 0
(required to get identical stress response in transformed system)

Same argument on the other symmetry-transformations leave
9 surviving coefficients:
C1111, C2222, C3333, C1122, C1133, C2233, C2323, C1313, C1212



Anisotropic materials (4) 
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C1111, C2222, C3333, C1122, C1133, C2233, C2323, C1313, C1212

Voigt notation: 4 indices  2 indices:
11  1, 22  2, 33  3, 23  4, 13  5, 12  6
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Anisotropic materials (5) 
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C is called the stiffness matrix, its entries are elastic constants.
System of equations above generally describes most type of
(linear elastic) rocks.

S = C-1 is called the compliance matrix.    = S



Nonlinear elasticity
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Linear elastic Perfect elastic

Elastic w. hysteresis Permanent
deformation

E constant E incr. w load



Impact of cracks Ex. 1
σx Crack oriented w. face normal to stress.

No stress can be transferred across crack.
Hence the effective Young’s modulus is reduced:
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E: Young’s modulus for equivalent uncracked material,
ξ: crack density
Q: crack shape factor

Increasing stress → εx increases. Part of strain increase caused by
closure of crack. At stress level σx

c the crack closes, and for higher
stress levels ξ = 0 and Eeff = E.



Impact of cracks Ex. 1 
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Perfect elastic

E incr. w load

Qualitative stress – strain response:
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Compare to std. nonlinear curve

Right hand curve can actually be a process of
continually closure of cracks.



Impact of cracks Ex. 2
σx

Closed crack oriented w. face at a finite angle
to stress.
Due to friction the closed crack can transfer
shear stress up to a certain level τc.
When τ exceeds τc the crack surfaces slip and
slide, relieving stress, implying reduced τ below τc.
Sliding results in a strain increase.

Upon unloading τ is reduced and may become
equal to –τc, inducing reverse sliding.



Impact of cracks Ex. 2 

ε

σ

Normal stress – shear stress:

τ

σ

τc-τc

Reverse
sliding

Sliding

Stress – strain:

Strain increase
by sliding

Compare to hysteresis-curve / permanent deformation.
→ Many nonlinear effects can be explained by behaviour of

micro-cracks / impurities in material.



Poro-elasticity

ε
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σ

Liquid saturated porous rock

Fluid
”squirt”

Fluid
”squirt”

σ

Edrained
Fast
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If stress (load) increase is fast, the liquid won’t have time to evade, 
and part of the applied stress will be carried by the fluid
→ apparently stiff rock.
For slow load increase the stress is taken up by the rock, and the fluid
evades at static conditions → similar to dry rock, as discussed.



Basic Constitutive Laws: Poro-elasticity
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C and M are additional elastic modili required to describe the
two-phase medium.
ζ is a strain parameter describing the volumetric deformation of
the fluid relative to that of the solid:

)( fs uu 

As the processes in oil / gas reservoirs are really sloooowww, we
will not discuss the impact of fluid stress / strain any more.



Real rocks / soils

Most if not all sands / weak sandstones (unconsolidated
material) I’ve encountered don’t behave elastic.

Zoback claims some well-cemented sandstone exhibits
nearly ideal elastic behaviour over a wide range of
applied stresses (next slide).

In general, most materials obey linear elastic laws only
for small load increments.



Lab Experiment Well-cemented Sandstone

From Zoback

Increasing load:
1. Closure of micro-cracks (< 9 MPa)
2. Linear elastic (< 45 MPa)
3. Damaging of rock

a) plastic deformation
b) failure

Sets the scene for coming seminars…

Note that the strain values for this
example are really small.
I.e. the rock is relatively strong, and
strains are almost ”infinitesimal”


