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Definition: Strain ¢ — Elongation

P Line segment OP has been deformed to OP’.
P’ The elongation ¢1s defined as;
L A
Iz o= L—L
L
0, 0,

Elongation is an example of strain:
Particles in a volume move in a manner which

Initial After bein : . ) ,
: 5 cannot be described by rigid motion or rotation
subjected to
stross of the volume as such.

Convention: € > 0 for a contraction.



Definition: Strain ¢ — Shear

p P An 1nitial orthogonal angle 1s deformed by
} an angle y. Then
4
lemnT
2
) 0 is called shear strain
Initial corresponding to point O and direction OQ
After being
subjected to In general, assume a particle (x,y,z) in a body
stress.

1s shifted to position (x’, y’, z’) when the body
1s deformed. Set
X' =x—u
y =y-v
z'=z—w



2D Infinitisemal strains

Tnitial Shear strain corr. to x-direction:
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Elongation at (x,y), in x-direction:
(x+Ax)—x—[(x+Ax—u(x+ Ax)) — (x —u(x))]
(x + Ax)—Xx

when Ax,Ay — 0

E =

X

u(x+Ax) ) —>— when Ax — 0
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All components of strain

o
T Ox Strain Tensor:
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Alternative notation

X =(X,y, 2)

u=(u v, w)

1
EZ-J-—E
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Ox,
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j) i’j — 19293

Obviously g; = &,

Strain Tensor:

Symmetric, but no point 1n
diagonalising 1f principal axes of
strain # principal axes of stress



Simulated bending of Sand Box (low tension strength)

1&80

-538

Mean effective stress (MPa)



Simulated bending of Sand Box (low tension strength)

0.23

-0.12

Volumetric Strain (MPa)



Linear Elasticity

7 Hooke’s law:
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E (Young’s modulus) and
v (Poisson’s ratio)
are examples of Elastic Moduli




Elastic Modili (in idealized experiments)

o
Young’s modulus: F =—1
811

1 ’ " E33

Poisson’s ratio: p =233

&

(for unidirectional stress, 1.e. 6,; # 0, and 6,, = 65, =0)

An 1sotropic (and homogeneous) material will respond to
applied stress independent of the orientation (of the stress).
For 1sotropic materials principal axes of stress and strain coincide.



Basic Constitutive Laws

Assuming infinitesimal displacement ou the response 1s linear.

= elongation strain caused by

s, Total strain 1n x-direction =
l + width increase strain by o,

1 1

_ y—Stress __ .
E,.=—0 +¢&; =—0, Vg,
- — E E

1 1%
=—0,——O0
E E 7




Basic Constitutive Laws

Including z-direction:

1 1% 1%
E&, =—0, ——0, ——0,
E E ' E
. 1
Normally expressed by using the mean stress p (= E(O'x +o,+0.))

1+v 3v I+

e Ly =770y

&g =1+—VG —3—Vp I =1+—V0'

y E y E Xz E Xz
1+v 3v 1+v

&, =——0,——pD =——0



Basic Constitutive Laws

Solving these equations for stress:

E vE :
o, =——-3¢ + E,1=X,),z2
l1+v (1+v)1-2v)
T E [, ij=xy,x
L= — o = ) Z, 7z
I RV S =AY

Normally written as:
o, =2Gg, + s, i=x,y,z
T, =2GL,, ij=xy,xz,yz

U’

where G and A are other elastic modili.



Elastic Modili

o
Young’s modulus: £ =-—1 ou
811 ,
. . E
Poisson’s ratio: y=—-2 Xihl/ 0%,
gll II
|l o X3
1. _ %13 , ou
Shear modulus!): G 5 Shear strain: &, = ——23
13 5_)(1
P
Bulk modulus?: K=
g

v

(Compressibility = 1/K)

Lamé’s constant A: No direct physical meaning, but convenient. E.g.
K=14+ 26 or A= by
3 (1+v)1-2v)

DDistortion w. no volume change. »Volume change, no distortion



Elastic Modili —typical magnitudes

Material E (GPa) % K(GPa) | G (GPa)
Uncons. sand | 0.01 — 0.1 ~0.45
Sandstone 0.1-30 0-0.45
Clay 0.06 — 0.15 ~0.4
Shale 0.4-70 0-0.3
Chalk, hiporo 0.5-5 0.05-0.35
Chalk, loporo 5-30 0.05-0.3
Granite 5—85 -0.3-04
Calcite 74 27.5
Quartz 37.5 41




Elastic modili (cont’'d)

In an 1sotropic (and homogeneous) material only two elastic modili are
needed to fully describe the material.

A number of relationships between the five standard modili exist,

and 1n practice the two modili that are most suited for the given
experiment / situation will be used.

But unfortunately, 1sotropic materials are pretty rare in nature...



Anisotropic materials

In an anisotropic material nothing can be assumed.

E.g., Young’s modulus will be direction dependent,

and the material’s response to load (stress) will depend on
the stress orientation.

Still assuming linear behaviour, the most general stress—strain
relationship will be:
Every component of stress depends on all components of strain:

O, = Z Cijklgkl
k.l

C,, elastic constants. (i, j, k, [=1,2,3 — 81 constants)



Anisotropic materials (2)

O, = Z Cin €
k,l

Symmetry considerations & no-rotation/translation at rest imply:

Cirt = Ci = Ciine = Cii

y J y J

Strain energy symmetry (not derived here):

Cin = Cklij

Yy

— Number of independent constants reduced to 21



Anisotropic materials (3)

O, = Z Cin €
k,l

Rocks normally possess orthorombic symmetry
(material has three perpendicular planes of symmetry)
Then the stress response will be 1dentical 1f we e.g. let
X>X, Yy >V,Z—>-Z
which implies
Ciiz=Chis =0
(required to get identical stress response in transformed system)

Same argument on the other symmetry-transformations leave
9 surviving coefficients:

Cllll’ C22229 C33339 C11229 C11339 C22339 C23239 C13139 C1212



Anisotropic materials (4)

O, = Z Cin €
k,l

Cllll? C22229 C33339 C111229 C111339 C22339 C23239 C113139 C11212

Voigt notation: 4 indices — 2 indices:
11>1,22>5>2,33 53,23 54,13 >5,12—>6

c, C, C, 0 0 0
C, C, C, 0 0 0
o_|Cs Gy Gy 000
o 0 0 C, 0 0
0 0 0 0 C, 0
0 0 0 0 0 C




Anisotropic materials (5)

O-X gx
GJ’ gy
GZ gZ
= and g= 6 =Cs¢
T, ZFyZ
TXZ ZFXZ
Ty | _2ny ]

C 1s called the stiffness matrix, its entries are elastic constants.
System of equations above generally describes most type of
(linear elastic) rocks.

S = C-! is called the compliance matrix. €= Soc



Nonlinear elasticity

Linear elastic

E constant

&

Elastic w. hysteresis

/4

Perfect elastic

E incr. w load

&
Permanent
deformation

&




Impact of cracks Ex. 1

lO’x

|

Crack oriented w. face normal to stress.
No stress can be transferred across crack.
Hence the effective Young’s modulus is reduced:

% _F,, = E(1-£0)

E

X

E: Young’s modulus for equivalent uncracked material,
¢: crack density
Q: crack shape factor

Increasing stress — ¢, increases. Part of strain increase caused by
closure of crack. At stress level ¢, ¢ the crack closes, and for higher
stress levels ¢ =0 and £ ;= E.



Impact of cracks Ex. 1

Qualitative stress — strain response:
Compare to std. nonlinear curve

O

0 .
Perfect elastic

E incr. w load

&

Right hand curve can actually be a process of
continually closure of cracks.



Impact of cracks EXx. 2

lO’x

Closed crack oriented w. face at a finite angle

to stress.

Due to friction the closed crack can transfer

shear stress up to a certain level 7...

When 7 exceeds 7. the crack surfaces slip and
slide, relieving stress, implying reduced t below ...
Sliding results in a strain increase.

Upon unloading t 1s reduced and may become
equal to —t_, inducing reverse sliding.



Impact of cracks EXx. 2

Normal stress — shear stress: Stress — strain:

o o

Strain increase
by sliding

Reverse§
sliding
_’ P

Compare to hysteresis-curve / permanent deformation.
— Many nonlinear effects can be explained by behaviour of
micro-cracks / impurities in material.



Poro-elasticity

Liquid saturated porous rock

o

o E

undrained

Fast
Fluid E drained

’,Squirt’,

Fluid
. <_
’,Squlrt’,

Slow

| :

If stress (load) increase 1s fast, the liquid won’t have time to evade,
and part of the applied stress will be carried by the fluid

— apparently stiff rock.

For slow load increase the stress 1s taken up by the rock, and the fluid
evades at static conditions — similar to dry rock, as discussed.




Basic Constitutive Laws: Poro-elasticity

o, =2Gg +4Ae,-Cg, i=Xx,y,z
T, = 2GTL., ij =xy,xz,yz

l_],

p,=Ce,—Mg

C and M are additional elastic modili required to describe the

two-phase medium.
C 1s a strain parameter describing the volumetric deformation of

the fluid relative to that of the solid:

g:¢v'(us_uf)

As the processes 1n o1l / gas reservoirs are really sloooowww, we
will not discuss the impact of fluid stress / strain any more.



Real rocks / solls

Most 1f not all sands / weak sandstones (unconsolidated
material) I’ve encountered don’t behave elastic.

Zoback claims some well-cemented sandstone exhibits
nearly 1deal elastic behaviour over a wide range of
applied stresses (next slide).

In general, most materials obey linear elastic laws only
for small load increments.



Lab Experiment Well-cemented Sandstone

Stress (MPa)
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From Zoback

Increasing load:
1. Closure of micro-cracks (< 9 MPa)
2. Linear elastic (< 45 MPa)
3. Damaging of rock
a) plastic deformation
b) failure

Sets the scene for coming seminars...

Note that the strain values for this
example are really small.

I.e. the rock is relatively strong, and
strains are almost ’infinitesimal”



