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1. Stress



Definition: Stress σ

F

Area: A

σ = F/A

(just like pressure.
However pressure is a scalar magnitude)

Units: Pa = N/m2. (Or bars, atm, psi)
Often MPa or GPa.



Stress isn’t always normal

F Perpendicular:
Normal stress: σ = Fz /A

Along surface:
Shear stress: τx = Fx /A

τy = Fy /A

y

x

z

Fz

Fx Fy



Generalising to stress acting on elementary cube dV
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Stress is completely described by

Stress Tensor:



Equilibrium considerations
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Figure shows xy-view of stresses
acting on an elementary volume dV

As volume is at rest, no translational
or rotational net force can be present:

τxy = τyx

Similar argument for xz and yz.



I.e., Stress tensor is symmetric
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Hence the coordinate system can be rotated such that the stress
tensor is diagonal in the rotated system:
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Explicit Calculation 2D
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Stress , τ acting on surface,
net forces on triangle at rest cancel:

Recall: Force F = A, area of vertical
= Acosθ; area of horizontal = Asinθ
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Hence, and similar for τ-direction:
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Explicit Calculation 2D
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The directions θ1 and θ2 for which τ vanishes are
the principal axes of stress. (Orthogonal)
Corresponding normal stresses 1 and 2 are
principal stresses:
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Explicit Calculation 2D
Using principal axes in previous formula

the shear stress terms vanish, and by straightforward manipulation:
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Explicit Calculation 2D
This can be expressed as:
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I.e. a circle with centre at (c,0) and radius r.
It is called Mohr’s (stress) circle.
Stresses  and τ in any direction θ correspond
to a point on the circle

σσ2 σ12θ

τ Max possible shear stress



What about 3D?
The construction of Mohr circles
can be done in a similar manner in 3D.
(A little more complicated obviously…)

σ

τ

σ1σ2σ3
When (, τ) in:

(x,y)-plane: (, τ) on circle C12
(x,z)-plane: (, τ) on circle C13
(y,z)-plane: (, τ) on circle C23

else (, τ) in blue area between circles
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C23

C13



Principal stress

When stress tensor is diagonal:

Axis system: Principal stress directions
Diagonal elements: Principal stresses; σ1, σ2, σ3

As earth’s surface is in contact with air or water
(which cannot support shear tractions),
the (horizontal) earth surface is a principal stress plane.

Hence one principal direction is vertical, while the other
two act in an approximate horizontal plane.

→ In general also true in the upper crust, about 15-20 km down.



Principal stress (2)

Notation:
Vertical stress: V
Maximum horizontal stress: H,max, H, H1
Minimum horizontal stress: H,min, h, H2

(S often used in place of )

Normally,
V > H,max > H,min

A material will always fail in the direction of the largest stress,
however small the difference may be. (E.g. breakout tests)



Rock failure & principal stress directions

We can clearly
see the two
perpendicular
directions in 
which the rock 
has broken



Rock failure & principal stress directions

Another example showing the same feature.



Stress ordering & Fault Types (Anderson)

σV
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Normal

V > H,max > H,min



Stress ordering & Fault Types (Anderson)

σV
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Strike-slip

H,max > V > H,min



Stress ordering & Fault Types (Anderson)

σV

σHmax

σHmin

Reverse

H,max > H,min > V



Other concepts

Compressive stress is positive (by convention)
Tensile stress (extension) is negative
(Standard in rock mechanics, but not in

solids mechanics)

Examples of stress invariants (independent of coordinate system)
Mean normal stress:

Differential stress:
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Principal stress directions – Global

Direction & magnitude 
of Hmax in northern
North Sea.
(from Zoback)

Determined by drilling 
induced tensile fractures
and breakout tests in wells



Local stress during fault generation (1)
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Local stress during fault generation (2)
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Local stress during fault generation (3)
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 Even though the global stress field is relatively uniform, (very) large
local variations exist near irregularities as faults / fractures



Stress irregularity

Load

Uniform load on a homogeneous volume results in stiff
motion or uniform deformation.
In order to kick off an irregular event, the load must
have a local irregularity or the volume must have a local
point of weakness.

Experiment: Simplistic model of Greenland drifting off from
Scandinavia – resulting stress field in North Sea Basin.



Stress in a volume under tension
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Stress in a volume under tension (2)



Stress in a volume under tension (3)
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Just a simple model,
but demonstrates that
although everything is
homogeneous & regular,
an irregular stress field
is generated; containing
necessary impurities for
offset of faults



Effective Stress – intuitive definition

σ

pf

In a porous rock, the
main mechanism is
deformation of the pore
space, not the solid itself.
The force acting on the
pore walls is the external
stress  and an opposing
force by the fluid pressure
pf.
The net force attempting to
deform the pore wall is
hence ’ =  - pf.
’ is effective stress.



Effective Stress – actual definition

• In reality the grains will be somewhat compacted

• Pressure is a scalar, stress a tensor

• Taking account of both of these:

Effective stress ’:
(I is identity tensor)

Ifp '

α is Biot’s constant,

ilitycompressibBulk 
ilitycompressibGrain1

α always satisfies:    ≤ α ≤ 1
For sands / weak sandstone, α > 0.999,
and hence normally set to 1.



Porous rock vs. solids

• In a solid, the relevant external force is the applied stress

• Strength properties of a solid is tied to the solid itself

• Strength and deformation of a porous rock

• is only to a small degree dependent on the solid (grains)

• is dependent on the strength of the pore walls

• deformation means deformation of void space, not grains

• Hence: For porous rock / soil, effective stress is the governing
parameter

• (Much of the theory to follow was developed for solids, and
may need rethinking before applied to porous rocks)


